
Efficient Trajectory Optimization using a Sparse Model

Christoph Rösmann1, Wendelin Feiten2, Thomas Wösch2, Frank Hoffmann1 and Torsten Bertram1

Abstract— The ”timed elastic band” approach optimizes
robot trajectories by subsequent modification of an initial tra-
jectory generated by a global planner. The objectives considered
in the trajectory optimization include but are not limited to
the overall path length, trajectory execution time, separation
from obstacles, passing through intermediate way points and
compliance with the robots dynamic, kinematic and geometric
constraints. ”Timed elastic bands” explicitly consider spatial-
temporal aspects of the motion in terms of dynamic constraints
such as limited robot velocities and accelerations. The trajectory
planning operates in real time such that ”timed elastic bands”
cope with dynamic obstacles and motion constraints. The
”timed elastic band problem” is formulated as a scalarized
multi-objective optimization problem. Most objectives are local
and relate to only a small subset of parameters as they
only depend on a few consecutive robot states. This local
structure results in a sparse system matrix, which allows the
utilization of fast and efficient optimization techniques such
as the open-source framework ”g2o” for solving ”timed elastic
band” problems. The ”g2o” sparse system solvers have been
successfully applied to VSLAM problems. This contribution
describes the application and adaptation of the g2o-framework
in the context of trajectory modification with the ”timed
elastic band”. Results from simulations and experiments with a
real robot demonstrate that the implementation is robust and
computationally efficient.

I. INTRODUCTION

Trajectory planning finds an optimal collision free trajec-

tory that complies with the robots kinematic and dynamic

motion constraints. This paper focuses on trajectory modi-

fication assuming that a global planner generated an initial

feasible path beforehand [1]. In particular in the context of

service robotics the dynamic modification of a preplanned

path is preferable over offline trajectory planning. Online

modification copes with changes of a dynamic environment

by incorporating the most recent sensor data for local re-

finement of the trajectory. In most realistic applications the

model of the environment is subject to continuous change

due to partial, incomplete maps and dynamic obstacles.

Furthermore, the (re-)computation of a large scale global

path is often not feasible in real-time applications. This

observation leads to approaches which modify a path locally,

such as the ”elastic band” proposed by [2], [3].

Later the original approach was extended to nonholonomic

kinematics [4], [5], [6] and robotic systems with many

degrees of freedom [7]. [8] proposed a method, where an

initial path is deformed using optimization techniques. The

trajectory, i.e. the velocities along the path, are not optimized.

The time parameter is used to control the modifications of

1Institute of Control Theory and Systems Engineering, Technische Uni-
versität Dortmund, Germany

2Siemens Corporate Technology, Research Group Robotics, Germany

the path as the optimization proceeds. The planner considers

the nonholonomic constraints.

[9] deals with the deformation of trajectories rather than

paths by an explicit consideration of temporal information.

The deformation is decomposed into an obstacle avoidance

step using repulsive forces and a connectivity maintenance

step. Based on this work [10] proposes a single step approach

that combines external deformation with internal connec-

tivity forces. Both methods support general state transition

models and allow for spatial-temporal obstacle avoidance.

In contrast, our approach is based on a graph-optimization

formulation, operates with general optimization solvers and

time optimality is an explicit objective. Other methods which

directly optimize trajectories are presented in [11], [12].

In our case, a parametric path is augmented with velocity

profiles that respect the kinodynamic constraints of the

platform. The approach starts with an initial path found by

a global planner and represents it by a compact spline-based

path model also used in [13]. This path model exposes a set

of higher-level parameters to the optimization that iteratively

adapts the shape of the curvature continuous path to reduce

an objective function such as the time of travel. The main

difference to our work is that it trades in the precision of the

analytic model for a discretized trajectory model that allows

it to employ a highly sophisticated, efficient optimization

algorithm, enabling trajectory refinement in real-time.

Most recent approaches for trajectory modification dealing

with robot arms with many degrees of freedom use a

discretized representation of the trajectory in configuration

space (see [15], [16]). The proposed objective function

contains a finite difference matrix to smooth the resulting

trajectory and to additionally satisfy constraints like obstacle

avoidance. The CHOMP algorithm relies on a covariant

gradient descent method which explicitly requires the gra-

dients of each objective, whereas STOMP uses a stochastic

trajectory optimization technique without explicit knowledge

of gradients. Both approaches include temporal information

only in implicit manner by defining a specific discretization

and task duration. The differences to our approach are

detailed in Section IV.

In [17] the authors introduced a new approach called

”timed elastic band” which explicitly augments ”elastic

band” with temporal information. The proposed extension

allows the consideration of the robot’s dynamic constraints

and direct modification of trajectories rather than paths.

The ”timed elastic band” is formulated as a scalarized

multi-objective optimization. The structure of the underlying

optimization problem is sparse as most objectives are local

in that they only depend on a few consecutive configurations

2013 European Conference on Mobile Robots (ECMR)
Barcelona, Spain, September 25-27, 2013

978-1-4799-0263-7/13/$31.00 ©2013 IEEE 138

rather than the entire trajectory.
Numerical mathematic provides efficient algorithms for

optimization problems with sparse structures that have been

applied successfully to tasks such as ”visual simultaneous

localizing and mapping” (vSLAM) or ”sparse bundle ad-

justment” (SBA) [18]. [19] introduces an open-source C++

framework called ”general (hyper-)graph optimization” (g2o)

which solves graph based nonlinear optimization problems.

An obvious advantage of using a multi-objective optimiza-

tion framework is the modular formulation of the objectives

and constraints.
This paper presents the ”timed elastic band” (TEB) ap-

proach according to a hyper-graph based nonlinear optimiza-

tion problem and the implementation with g2o on a mobile

robot with a differential drive. The robot moves in a planar

environment with three global and two local degrees of

freedom. In general, the TEB is suitable for high dimensional

state spaces. By considering the temporal information, TEB

explicitly considers and controls the robot velocities and

accelerations.
We first introduce the general concept of TEB described

in [17] in more detail, in particular mapping the problem into

a hyper-graph representation, determining initial conditions

of the TEB and the algorithmic implementation. Section III

presents the connection between the ”timed elastic band”

and the g2o-framework. Section IV presents and analyzes

experimental results. Although the experiments in this pre-

sentation describe a non-holonomic robot, the approach is

not limited to any particular robot kinematic or dynamic

structure. Finally, section V summarizes the results of the

TEB and provides an outlook on further work.

II. TIMED ELASTIC BAND

A. Definition of Timed Elastic Band (TEB)

si

{map} x

y βi

si+1
βi+1

ΔTi

si+2
βi+2

ΔTi+1

(a) (b)

Fig. 1. (a) TEB: sequences of configurations and time differences and (b)
Large scenario with consideration of way-points and obstacles

The classic ”elastic band” is described in terms of a

sequence of n intermediate robot poses si = [xi, yi, βi]
T ∈

R
2×S1, in the following denoted as a configuration defined

by the robots position xi, yi and orientation βi in a global

frame ({map}, Fig. 1(a)):

Q = {si}i=0...n n ∈ N (1)

The TEB augments this representation by incorporating

the time intervals between two consecutive configurations,

resulting in a sequence of n− 1 time intervals ΔTi:

τ = {ΔTi}i=0...n−1 (2)

Each time interval denotes the time that the robot requires

to transit from the current configuration to the next configu-

ration in the sequence Q (Fig. 1(a)). The TEB is defined as

a tuple of both sequences:

B := (Q, τ) (3)

The key idea is to adapt and optimize the TEB in terms

of both configurations and time differences by a scalarized

multi-objective optimization red using the weighted sum

model:

f(B) =
∑
k

γkfk(B) (4)

B∗ = argmin
B

f(B) (5)

in which B∗ denotes the optimized TEB and f(B) denotes

the underlying global objective function.

Suitable component objective functions fk for TEB are

presented in [17] and belong to two basic types: constraints

such as velocity and acceleration limits formulated in terms

of penalty functions and objectives functions with respect to

the trajectory such as shortest path, fastest execution time

or clearance from obstacles. Sparse constrained optimization

algorithms are not readily available in robotic frameworks

(e.g. ROS) in a freely usable implementation. This motivates

the adoption of the g2o-framework in which constraints are

formulated as objectives in terms of piecewise continuous,

differentiable cost functions that penalize the violation of a

constraint.

B. Problem representation as a Hyper-Graph

According to equations (4), (5), the TEB is defined as

a scalarized multi-objective optimization problem. Most of

the required objective functions rely on parameters that only

depend on a subset of neighboring configurations of the band:

• Velocity (acceleration) constraints depend on two

(three) consecutive configurations and one (two) time

differences.

• Clearance from obstacles and homing on intermediate

way-points effect a single configuration and its k nearest

neighbors (in practice about 3-5).

• Compliance with the robot’s non-holonomic constraints

involves two adjacent configurations, which are required

to be located on a common arc of constant curvature.

Fastest and shortest path are exceptions to the local structure

as these objectives that globally depend on all parameters.

The fastest path with temporally uniformly spaced configu-

rations is obtained by minimizing the square of the sum of

all time differences or alternatively the sum of squared time

differences.

This property of locality of TEB results in a sparse system

matrix which is represented by a hyper-graph, where the

nodes correspond to the configurations and time intervals.

The nodes containing parameters that contribute to the same

objective function are connected by a corresponding multi-

edge. In the following, equation (4) is transformed into a

hyper-graph. The definition of a hyper-graph implies that

139

the number of nodes that are connected by a single edge

is not limited to two nodes as in a conventional graph. A

hyper-edge is an extension of a conventional edge as its

connects multiple nodes with each other. Each objective

functions depends on a subset of TEB-states (configurations

and time differences), a hyper-edge represents the objective

function fk and connects nodes which correspond to the

configurations and time differences that occur as parameters

in its evaluation.

s0 s1

ΔT0

Velocity fvel

o1

O
bs

ta
cl

e
f ob

(a) Velocity and obstacle objec-
tive function formulated as
a hyper-graph

s0

o1p1

s1 s2 s3

ΔT0 ΔT1 ΔT2

ftime

frate
frate

frate

fvel fvel fvel

fpath

fob

fob

fob

fob

facc facc facc

fnh fnh fnh

(b) Simplified example structure of TEB
hyper-graph

Fig. 2. Hyper-Graph structures: nodes (circles) and multi-edges (rectangles)

Fig. 2(a) shows a simple example of a hyper-graph rep-

resenting a constraint and an objective related to two subse-

quent configurations s0, s1, their time difference ΔT0 and an

obstacle o1 ∈ R
2. Notice, that our specific implementation

partitions each configuration node into a position node and

an orientation node to facilitate the modular activation and

deactivation of objective functions. The velocity objective

function puts an upper bound on the distance between s0 and

s1 that the robot is able to travel within the allocated time

ΔT0. Velocity-multi-edges (fvel) and acceleration-multi-

edges (facc) capture dynamic aspects. The distance between

an obstacle and its nearest configuration (in the example o1

and s1) is bounded from below by a minimal separation

that guarantees a collision free path. The obstacle location is

inferred from sensor data provided from the perceptual layer

within the robot’s architecture. The corresponding obstacle

is not subject to graph optimization and is illustrated by a

double circle in Fig. 2(a). A larger extract of the TEB hyper-

graph with respect to most of the implemented objective

functions is illustrated in Fig. 2(b). The objective function

in each multi-edge is represented in the overall objective

function according to its weight. In addition to the fixed

obstacle node, the way-point configurations p and the initial

state s0 are fixed, too. In our application we use the planner

in the control loop, so the initial state is given by the robot’s

current configuration.

C. Control flow

Fig. 3 shows the control flow of the implemented TEB.

In the initialization-phase an initial path is enhanced to

an initial trajectory by adding default timing information

respecting the dynamic and kinematic constraints. In our

case the initial trajectory is composed of piecewise linear

Insert/delete
TEB states

Initialization

Path

Associate TEB states with
waypoints/obstacles

Generate hyper-graph

Optimize hyper-graph

Calculate control variables

Robot
&

Environment

Re-Initialization

{zj}

B(Q,τ)

B(Q,τ)

Obstacles

Mapping

Hyper-graph

B*(Q,τ)

B*(Q,τ)

B(Q,τ)

v,ω

Odometry

Trajectory m
odification

B(Q,τ)

Verify trajectory

B*(Q,τ)

Possible?:
Yes/No

Fig. 3. Control flow of TEB-implementation

segments with a pure rotation followed by a translation. Such

a path representation in terms of a polygon is commonly

provided by probabilistic roadmap planners [22].

At each trajectory modification step, the algorithm dy-

namically adds new configurations or removes configurations

in order to adjust the spatial and temporal resolution to

the remaining trajectory length or planning horizon. The

most recent robot perceptions of obstacles and way-points

are associated with TEB states. Notice, incorporating an

obstacle motion model (e.g. constant velocity) by finding the

minimal spatial-temporal distance between TEB and obstacle

prediction instead of using the actual pose measurement often

leads to a more intuitive solution. In order to challenge our

planner and to analyze how it copes with novel perceptions

of obstacles at real time we consider obstacles as static in

the experiments in section IV. An extension of our approach

to dynamic obstacles is straightforward. The optimization

problem is transformed into a hyper-graph and solved with

the g2o-framework described in more detail in the following

section. The g2o-framework optimizes the TEB in batch

mode, therefore a new graph is generated at every iteration

and initialized with the recent solution. We recommend to

perform multiple iterations of the trajectory modification step

during a single robot control cycle (in our case four loops

including five Levenberg-Marquardt iterations each loop).

The optimized TEB is verified for the violation of hard

constraints in which case the robot either stops or the motion

planner is reinvoked. Upon successful verification the control

variables v and ω are calculated according to the immediate

next configuration in the TEB and sent to the robot as motion

commands. Prior to every modification, the re-initialization-

phase checks for new or modified way-points which is useful

if way-points do not originate from a static map but are rather

perceived as landmarks from a robocentric perspective with

an on board camera or laser scanner.

140

III. G2O GRAPH OPTIMIZATION

g2o has been developed to solve nonlinear optimization

problems with the following particular structure [19]:

F(x) =
∑

k=〈i,j〉∈C
ek(xi,xj , zij)

TΩkek(xi,xj , zij)︸ ︷︷ ︸
Fk

(6)

x∗ = min
x

F(x) (7)

x denotes the parameters to be optimized, zij denotes the

constraint between the two parameter blocks xi and xj and

Ωk represents the information matrix of the constraint. The

vector ek(xi,xj , zij) provides the error between constraint

and parameters. Notice, that (6) is the objective function

typically employed in nonlinear least squares optimization.

The preparation of the TEB-problem for optimization with

g2o-framework, see (4), proceeds according to (6). x is

substituted with the TEB-tuple B. In case of scalar error

terms, Fk simplifies to Fk = Ωke
2
k, with the substitutions

Ωk = γk and ek =
√
fk (using (4)). Note that for trajectory

optimization the parameter xi in (6) is given by the TEB-

State (si,ΔTi) in (3).

The g2o-framework requires the definition of nodes and

edges. Table I provides an overview of the nodes of the TEB.

bi denotes the position vector [xi, yi]
T . For each node, an

increment is defined, which maps the local parametrization

of the variable to its initial value. In case of incrementing the

orientation, the angle is normalized to the interval [−π, π)
after addition of the incremental rotation to the previous ori-

entation. The remaining variables are expressed in Euclidean

coordinates, therefore simple addition suffices.

TABLE I

OVERVIEW OF THE NODES OF TEB

Variable Symbol Parametriz. Increment
Position bi ∈ R

2 (Δxi Δyi) bi +Δbi

Orientation βi ∈ R Δβi normAngle(βi +Δβi)
Time diff. ΔTi ∈ R ΔT ∗

i ΔTi +ΔT ∗
i

The g2o-framework requires the definition of the error

function ek =
√
fk and the weight Ωk = γk for the

configuration of each multi-edge. In the experiments pre-

sented in this paper, the Jacobian of the error function ek
in (6) is calculated by numerical approximation by the g2o-

framework. In future work it is possible to supply derivatives

in analytical form to increase the efficiency of optimization.

Equation (7) is solved with the Levenberg-Marquardt

method [19]:

(H+ λI)x∗ = −b (8)

H =
∑

JT
kΩkJk denotes the system matrix (Hessian), λ

is a damping factor which is automatically chosen by the

g2o-framework. x∗ represents the optimal TEB-states and

b =
∑

eTk Jk the error term. Jk denotes the Jacobian which

is obtained from linearization at the current solution. An

important property of the TEB is the sparseness of H.

Fig. 4(a) illustrates an example of the TEB system matrix

H. It is sparse with only 15 percent of non-zero elements.

(a) Example system matrix
of TEB

(b) TEB system-matrix after
element ordering (AMD)

Fig. 4. System matrix and AMD ordering

In this example, the first 141 states correspond to the 47

configurations xi whereas the final states 142-189 denote

the time differences ΔTi. These final states are related to

the objective of fastest trajectory, thus this block is dense

and connections grow quadratically with the dimension of

the TEB.

Equation (8) is solved in a numerically efficient way by

means of sparse Cholesky decomposition algorithms and a-

priori ordering (e.g. AMD, Fig. 4(b)) [20], [21]. The g2o-

framework provides two different solvers based on Cholesky

decomposition: CHOLMOD and CSparse. In first experi-

ments, the two solvers show no significant difference in terms

of the runtime behavior of the optimization. The CSparse

solver seems to be slightly faster, thus the experiments in

this paper are based on CSparse. It remains unclear which

solver is better suited for substantially higher dimensional

spaces ([19] prefers CSparse for smaller dimensions and

CHOLMOD for higher ones).

IV. EXPERIMENTS AND RESULTS

Simulation and real experiments focus on a non-holonomic

robot with a differential drive. The robot simulator is a virtual

machine running with Intel Core i7 2x2.3GHz and 4GB

RAM. Real robot experiments are performed on a Pioneer

2 with a Siemens Lifebook s6410, Core2Duo, 2.4GHz, 2GB

RAM. The robot is equipped with a Hokuyo Laser Scanner.

The solutions are robust with respect to the selection

of weights for the proposed objectives in the optimization

problem. We set the nonholonomic constraint to 1000 and

all other weights to 1.

A. Simulation experiments

(a) Snapshot 1 (b) Snapshot 2

Fig. 5. Obstacle avoidance (1 square = 1m2)

In mobile robot navigation the avoidance of collisions is

an essential task. In order to accomplish obstacle avoidance

for dynamic obstacles the runtime of the TEB is analyzed

in an appropriate scenario. Fig. 5 shows two snapshots of

141

the trajectory modification with the TEB, while an obstacle

deforms the original trajectory to the left from the perspective

of the robot.

The average runtime of one single trajectory refinement

cycle (see Fig. 3) in scenario of Fig. 5 is 2.1ms ± 0.4ms.

During the entire simulation of 1000 cycles the obstacle

moves back and forth towards the TEB. The computation

time remains constant and is not affected by the dynamic

obstacle.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t [s]

v
[m

/s
]

Right wheel
Left wheel

(a) Velocity profile (b) Acceleration profile

Fig. 6. Velocity and acceleration profile of snapshot 2

The (green) vectors in Fig. 5 represent the translational

velocity of the two wheels of the differential drive robot.

The velocity and acceleration profiles of each wheel are

shown in Fig. 6. The trajectory satisfies the constraints on

the maximum velocity limited to 1.4 m
s

and the maximum

acceleration limited to 0.3 m
s2

.

10
2

10
3

10
4

10
5

10
6

10
−3

10
−2

10
−1

10
0

10
1

R
un

tim
e

pe
r

T
E

B
 C

yc
le

 [s
]

TEB Dimension

(a)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 T
ot

al
 C

os
t (

12
 T

ra
je

ct
or

ie
s)

Elapsed Time [s]

TEB
STOMP

(b)

Fig. 7. (a) Runtime per TEB-Cycle for increasing dimension of TEB and
(b) Total cost of 12 trajectories over elapsed time (scaled to [0..1])

Another important performance aspect is the dependency

of the average runtime per iteration on the dimensions of the

TEB which grows linear with the number of configurations.

This relationship is analyzed by increasing the number of

configurations (higher density) in the very same scenario.

The results are illustrated in Fig. 7(a). For more than 10000

states, corresponding to approx. 2500 configurations, at a

path length of approx. 5m the runtime exceeds the robot

control cycle of approx. 20-30ms. However, in realistic

applications the spatial-temporal resolution of the trajectory

is significantly lower, because refinements of the initial

trajectory only make sense within a look ahead distance of

a few meters that equals the robots perceptual range.

A larger scenario composed of two static obstacles and

four intermediate way-points is illustrated in Fig. 1(b). The

trajectory satisfies all of the formulated constraints.

Fig. 8 demonstrates the power and efficiency of the pro-

posed sparse model in combination with the g2o-framework.

(a) Initialization (b) TEB: Optimization result

(c) STOMP: Optimization result

Fig. 8. Optimization of 12 different trajectories

Twelve initial trajectories, shown in Fig. 8(a), are optimized

in real-time in order to select the best candidate (e.g. with

respect to optimization costs). The trajectory modification

cycle (see Fig. 3) is executed in different threads on the

simulation system. The two first iterations of TEB to reduce

the cost of the initial trajectories to the near optimal ones

shown (Fig. 8(b)) require 218ms (see Fig. 7(b)). Every

subsequent iteration with randomly moving obstacles only

require 48ms ± 4ms. Note, that the trajectories are much

longer than in the previous scenario in Fig. 5.

As a benchmark, the computational effort of TEB is

compared with STOMP ([16]) in the same scenario (Fig. 8).

STOMP is originally formulated for robotic arms, therefore

the joint variables to be optimized are replaced by the planar

state x and y. Notice, that STOMP does not depend on gradi-

ent information or requires differentiable objective functions.

In contrast, the g2o-framework approximates gradients nu-

merically and requires differentiable objective functions. Our

STOMP implementation employs twenty random trajectory

roll-outs to perform an update step.

The implementation contains the proposed acceleration

matrix in combination with the obstacle cost function. Origi-

nally, STOMP aims to achieve a collision-free trajectory and

not necessarily a fast one. Obviously, this is not sufficient

for motion planning of mobile robots. It would be possible

to extend STOMP by additional states and objectives. How-

ever, even the basic STOMP-2D implementation that only

considers collision free path is outperformed by the TEB.

Figure 8(c) shows the optimization result for all 12 initial

trajectories with STOMP. Each trajectory is composed of

80 2D-points which corresponds to the average number of

configurations in each TEB (TEB uses dynamical resizing).

The fixed number of configurations in combination with the

weight of the acceleration matrix influences the task duration.

For different scenarios, the weights have to be adjusted

(see longer trajectories in Fig. 8(c)). With the proposed

objective functions, our STOMP implementation fails to

handle discontinuous initial trajectories which TEB mostly

142

manages. The runtime is compared to TEB in Fig. 7(b).

The TEB performs the optimization significantly faster than

STOMP. Note, the STOMP parameters are intuitively chosen

such that they are largely comparable with TEB for the

2D case. In addition, we also implemented a 2D-version of

CHOMP (without Hamilton Monte Carlo) for comparisons,

but the obtained results are not robust in the above scenarios

for a sufficient spatial resolution.

B. Robot experiments

(a) t � 0 s (b) t � 6 s (c) t � 11 s (d) t � 16 s

Fig. 9. Avoiding a dynamic obstacle by real time adaptation of the TEB

The augmentation of elastic bands with temporal infor-

mation and the use of g2o-framework allow for real-time

trajectory adaptation and control of the robot. Fig. 9 shows a

sequence of snapshots from a real robot experiment in which

a person walks through the scene (similar to the previous

simulated scenario with one obstacle). The TEB adapts the

original robots trajectory (t = 0) in real time and avoids

an imminent collision with the person during the interval

t ∈ [6, 12] by deforming the original trajectory away from

the obstacle.

V. CONCLUSION AND FURTHER WORK

This paper presents numeric aspects of the implementation

of a real-time trajectory modification with TEB focusing on

the implementation with the g2o-framework. The innovation

of the TEB is to augment the classical elastic band with

temporal information. Therefore it is possible to not only

consider geometric and kinematic constraints with respect

to the path but to simultaneously account for dynamic

constraints of the mobile robot. g2o provides algorithms

and solvers for sparse system structures. We demonstrated

in this paper that the TEB exhibits such a sparse system

structure and that it is therefore efficiently solved by the g2o-

framework. The algorithm operates in real-time and thereby

directly generates commands for the underlying robot motion

controller. The method is highly flexible and is easily adapted

to different robot kinematics and application requirements.

Future work is devoted to further improvements of the

runtime. The first means is to provide analytical Jacobians

to the optimization algorithm. The second is to re-use the

a-priori ordering of the sparse TEB system-matrix from one

optimization cycle to the next. The third is to dynamically

adapt the resolution of the TEB both in time interval length

and in degree of detail of the model according to the planning

horizon. For the purpose of robot motion control, only the

next few states are relevant, hence remote configurations in

the far future are planned on a coarser scale.

A more fundamental change to the approach is to switch

to a sparse constrained optimization framework. This renders

the current formulation of constraints in terms of penalty

functions obsolete.

ACKNOWLEDGMENT

This work has been funded by the ARTEMIS Joint Under-

taking as part of the project R3-COP and from the German

Federal Ministry of Education and Research (BMBF) under

grant no. 01IS10004E.

REFERENCES

[1] S. M. LaValle, ”Planning Algorithms”. Cambridge University Press,
Cambridge, U.K., 2006.

[2] S. Quinlan, O. Khatib, ”Elastic Bands: Connecting Path Planning and
Control”, in Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), pp. 802-807, 1993.

[3] S. Quinlan, ”Real-time modification of collision-free paths”, PhD
thesis, Stanford University, 1994.

[4] M. Khatib, ”Sensor-based motion control for mobile robots”, Labora-
toire d’Automatique et d’Analyse des Systèmes LAAS-CNRS, 1996.

[5] M. Khatib, H. Jaouni, R. Chatila, J. P. Laumond, ”Dynamic Path
Modification for Car-Like Nonholonomic Mobile Robots”, in Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA), 1997.

[6] B. Graf, J. M. H. Wandosell, C. Schaeffer, ”Flexible Path Planning for
Nonholonomic Mobile Robots”, Fraunhofer Institute Manufacturing
Engineering and Automation (IPA), 2001.

[7] O. Brock, O. Khatib, ”Executing Motion Plans for Robots with Many
Degrees of Freedom in Dynamic Environments”, in Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA), pp. 1-6, 1998.

[8] F. Lamiraux, D. Bonnafous, O. Lefebvre, ”Reactive path deformation
for nonholonomic mobile robots”, in IEEE Transactions on Robotics,
Vol. 20, No. 6, pp. 967-977, 2004.

[9] H. Kurniawati, T. Fraichard, ”From path to trajectory deformation”,
IEEE/RSJ Intl. Conference on Intelligent Robots and Systems (IROS),
pp. 159-164, 2007.

[10] V. Delsart, T. Fraichard, ”Reactive Trajectory Deformation to Navigate
Dynamic Environments”, in Proc. of the Second European Robotics
Symposium (EUROS), Vol. 44, pp. 233-241, 2008.

[11] B. Lau, C. Sprunk, W. Burgard, ”Kinodynamic Motion Planning
for Mobile Robots Using Splines”, IEEE/RSJ Intl. Conference on
Intelligent Robots and Systems (IROS), pp. 2427-2433, 2009.

[12] C. Sprunk et al. ”Online Generation of Kinodynamic Trajectories for
Non-Circular Omnidirectional Robots”, in Proc. of the IEEE Intl.
Conference on Robotics and Automation (ICRA), pp. 72-77, 2011.

[13] C. Sprunk et al., ”Improved Non-linear Spline Fitting for Teaching
Trajectories to Mobile Robots”, in Proc. of the IEEE Intl. Conference
on Robotics and Automation (ICRA), pp. 2068-2073, 2012.

[14] J. Mattingley, Y. Wang, S. Boyd, ”Receding Horizon Control: Auto-
matic Generation of High-Speed Solvers”, in IEEE Control Systems
Magazine, Vol. 31, No. 3, pp. 52-65, 2011.

[15] N. Ratliff et al. ”CHOMP: Gradient Optimization Techniques for
Efficient Motion Planning”, in IEEE Intl. Conference on Robotics and
Automation (ICRA), May 2009.

[16] M. Kalakrishnan et al. ”STOMP: Stochastic trajectory optimization
for motion planning”, in IEEE Intl. Conference on Robotics and
Automation (ICRA), pp. 4569-4574, May 2011.

[17] C. Rösmann et al. ”Trajectory modification considering dynamic
constraints of autonomous robots”, in Proceedings of the 7th German
Conference on Robotics (ROBOTIK 2012). May 2012.

[18] K. Konolige, ”Sparse Bundle Adjustment”, in F. Labrosse et al.,
editors, Proc. of the British Machine Vision Conference, pages 102.1-
102.11. BMVA Press, September 2010.

[19] R. Kümmerle et al., ”g2o: A general framework for graph optimiza-
tion”, in Proc. of the IEEE Intl. Conf. on Robotics and Automation
(ICRA), Shanghai, China, May 2011.

[20] P. R. Amestoy, T. A. Davis, and I. S. Duff, ”Algorithm 837: Amd, an
approximate minimum degree ordering algorithm.”, in ACM Trans.
Math. Softw. vol. 30, pp. 381-388, September 2004.

[21] Y. Chen et al., ”Alogithm 887: Cholmod, supernodal sparse cholesky
factorization and update/downdate”, in ACM Trans. Math. Softw. vol.
35, pp: 22:1-22:14, October 2008.

[22] L. E. Kavraki et al., ”Probabilistic roadmaps for path planning in high-
dimensional configuration spaces”, in IEEE Transactions on Robotics
and Automation, Vol. 12, No.4, pp.566-580, August 1996.

143

